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Abstract

The article investigates three ways to form a final estimate using two
different estimators, one of which exhibits higher variance or a bias: (1)
taking the estimate produced by the better estimator, (2) taking their
simple average, (3) taking their weighted average. It is shown that if
there is no serious positive correlation, using both estimators is always
preferable. Simple average is justified if both estimators exhibit similar
variances or when variances are unknown. Weighted average is optimal
in all other cases. The optimal weight rule is based on variances, not on
standard deviations or coefficients of variation. The findings are useful for
decision making in many situations, including the formation of the final
valuation when valuing firms or securities with a multitude of approaches.
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1 Introduction

In many practical situations we are to estimate an unobservable characteristic
(say, price of a stock), using more indicators (say, valuations coming from two
different multiples, for example P/E and MV/BV), each of them providing
different estimate of the characteristic. We hypothesize both indicators are
relevant. How to compose a final point estimate of the characteristic using
these multiple indicators? Three options arise.

1. Single indicator. Take the estimate given by the indicator we believe it
is the more precise one.

2. Weighted average. Assign weights to each of these estimates and cal-
culate their weighted average.

3. Simple average. Take a simple average of these estimates.

Usually, the second approach is commonly adopted (Mař́ık et al., 2011; more
applications should be given). It is based on a straightforward logic that better
information should be weighted more heavily and no relevant information should
be ommited. Nevertheless, it is difficult to come up with proper weights. Lack
of guidance about weight assignment leads to arbitrary decisions (called expert
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judgment; in some cases this name is proper, in others it is a mere euphemism)
and allows the analyst to justify virtually any value between the two indicators’
estimates.

Which of these options is the best? Although the optimal solution differs
situation by situation, certain general rules can be established. This article
brings an easy guidance based on one of the most common dispersion measures
– sample variances.

The article is structured as follows. In Chapter 2, the optimal weight vari-
ance rule is established for the baseline case of unbiasedness and independence
of the indicators. Chapter 3 investigates if similar rules hold for standard de-
viations or coefficients of variation. Chapter 4 presents a numerical example.
Chapters 5 a 6 study the variance rule if indicators are correlated or if one of
them is biased. Chapter 7 concludes.

2 The Variance Rule

We consider the two-indicator case only, because, as we will see, the idea can
be easily generalized to address multi-indicator cases. We label the indicators
X1 and X2 and, in accord with the statistical terminology, we will call them
estimators. Without the loss of generality, we consider X1 to be the more
precise (or, at least equally precise) one of these two. What is the precision
measure? We will use Mean Squared Error1 in this role. Mean Squared Error
of an indicator X is defined as

MSE(X) = E
{

(X − µ)2
}

= (E {X} − µ)2 + var {X} , (1)

where µ is the unobservable true characteristic (say, the correct price of a stock),
E is the expectation operator and var {X} = E

{
(X − E {X})2

}
represents

sampling variance of the estimator. MSE is always nonnegative and smaller
values define more precise estimators.

We will assume both estimators are unbiased (i.e. E {X1} = E {X2} = µ).
Even though biased estimators can improve aggregate precision, as we shall
see in Chapter 6, in practice, nobody constructs biased estimators deliberately.
For this reason, the unbiased case is taken as baseline in this article. By the
unbiasedness property, only variance determines the MSE. Thus, estimators’
standalone precision is

MSE(X1) = var {X1} , (2)

MSE(X2) = var {X2} . (3)

As we said before, X1 is more (or equally) precise than X2. This is is meant in
the form of MSE(X1) ≤ MSE(X2), which, by the unbiasedness assumption,
translates into var {X1} ≤ var {X2}.

Now we consider a composite estimator C using X1 and X2. We denote it
C(α) to emphasise it is a function of α:

C(α) = α ·X1 + (1− α) ·X2, (4)

1Often, Root Mean Squared Error, the square root of Mean Square Root, is used. This,
however, does not alter the results, because square root is a strictly increasing function and a
lower MSE always translates into a lower RMSE.
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where 0 ≤ α ≤ 1 is the composition parameter.2 The variance of the composite
indicator C(α), as a function of α is

var {C(a)} = α2 · var {X1}+ (1− α)2 · var {X2}+ (5)

+ 2 · α · (1− α) · cov {X1, X2} . (6)

Under supposition the two original indicators are uncorrelated, which is likely to
be the case when they are derived in a genuinely different way (this assumption
is relaxed in Chapter 5), the covariance term is zero (cov {X1, X2} = 0) and
the variance shrinks to

var {C(a)} = α2 · var {X1}+ (1− α)2 · var {X2} . (7)

The α is our parameter of choice. It should be set to minimize the above-
mentioned variance var {C}. From calculus, the minimal variance can occur
at

• Boundaries (α = 0, α = 1). The case of α = 0 means the final estimate
is based exclusively on X2. The α = 1 case means the final estimate is
based exclusively on X1. Out of these two, which is the preferred option?
Because the variance of C is then equal to the variance of the estimator
used, the more precise estimator, here X1, should be utilized and the less
precise estimator should be neglected. This corresponds to the single-
indicator option mentioned of the introduction.

• Local minima (0 < α < 1). How to find such points? Taking derivative
of var {C(a)} with respect to α and setting it equal to zero produces

∂var {C(α)}
∂α

= 2 · α∗ · var {X1} − 2 · (1− α∗) · var {X2} = 0 (8)

α∗ · var {X1}+ α∗ · var {X2} = var {X2} (9)

α∗ =
var {X2}

var {X1}+ var {X2}
. (10)

Variances being positive (were one of them zero, we would know the true
characteristic precisely and there would be no reason to engage in estima-
tor composition) and finite, for any combination of var {X1} and var {X2}
there exists exactly one value of α∗, which satisfies the condition and this
value is always greater than zero and smaller than one. Being between 0
and 1 is neccessary for calling α∗ weights.

Because var {C(α)} is a continuous function of α and for α < α∗, the
function is decreaing, and for α∗ < α the function is increasing (which can
be easily seen from its derivative), the α∗ represent a global minumum.
Thus, variance at boundary points α = 0 and α = 1 must be neccessarily
greater. Boundary points are thus irrelevant.

The Variance Rule. We have shown the optimal weight (labeled with
asterisk) on a more precise estimator X1 is

α∗ =
var {X2}

var {X1}+ var {X2}
, (11)

2Although α ∈ R without the restriction can in some cases improve the resulting precision,
it renders one of the weights negative, which is difficult to interpret. Fortunately, as we will
see, in most situations the optimal α will lie in the zero-one interval.
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and the optimal weight on the less precise estimator X2 is

1− α∗ =
var {X1}

var {X1}+ var {X2}
, (12)

It means both estimators X1 and X2 will be used to construct the sta-
tistically optimal composite indicator, even if one was individually much
less advantageous (exhibiting much higher variance) than the other.

The alpha condition presents a rigorous rule how to attribute weights. If
X1 and X2 are (or are thought to be) be equally reliable, the rule sets
α = 0.5. This correspons to the simple average option presented in the
introduction. The less reliable X2 is relative to X1, in other words, the
greater it’s variance is relative to the variance of X1, the less weight X2

should receive.

If variances are uknown. In some cases it is not possible to estimate
variances of the estimator any further beyond a qualified guess. For exam-
ple, consider valuing a stock when knowing that typical P/E in the relevant
industry is 6.5 and expected earings on our stock is USD 2.0, leading to an
estimate of USD 13. What is the variance of such estimator? It is obvious
there is some variance stemming from the fact the ratio 6.5 is taken from
certain sample of companies which might differ from each other and also
from our company; it is only unknown. Nevertheless, when an analyst
arbitrarily assigns weight to this estimate, he or she is implicitly making
an assumption on relative variances of the estimators. The analyst should
be aware of the fact and check if these implied differences in variances are
reasonable.

If variances are known. In other cases, sample variances are observable.
Typically, the estimator value (estimate) is based on certain number of
independent observations from a same distribution. For example, the
analyst can use P/E ratios of 8 comparable companies and MV/BV ratios
of 6 comparable companies. One thus can calculate sample variances of
both estimators and derive weights in accord with the optimality condition
on α.

It should be noted the variances (or their sample counterparts) must be
calculated at the level of estimates and not at the level of particularities in their
determination. For example, in the P/E case, one must calculate variance from
the values of the assessed stock which are implied by each comparable firm’s
P/E ratio and not variance of the P/E ratios. More on this in Chapters 3 and
4.

Variance reduction techniques. While keeping the estimators unbiased
(or at the expense of a small bias), variance of individual estimators can be
reduced by using techniques of robust estimation. This also lowers the composite
variance and also affects the choice of optimal α. The most common methods
are these.

• Median estimation. If the estimate is based on more observations, take
their median instead of mean.

• Ignoring unrealistic observations. If we believe some observation is
not realistic, we disregard it. Obviously, as extreme values have dispro-
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portionate impact (provided we do not use median estimation), it is of
special interest to check plausibility of the extreme observations.

• Trimming observations according to some objective criterion. Say,
values which lie more than 3 standard deviations from the median, are
disregarded and the point estimate and variance is calculated from the
remaining observations.

Although these methods are more robust than means, in the sense if data are
bad3, they perform much better. But higher robustness comes at the expense
of precision when the data are well-behaved. Unless we know exactly the data
flaws, it is not easy to devise the best correction strategy. As Greene (2012)
states, alternatives to means might be favorable expecially when the sample
size is small (which is often our case), though their setting is usually quite
arbitrary and it is not easy to verify if these measures fare better than their non-
robust counterparts in a particular case.4 For this reason, variance-enhancement
measures are left aside in this article.

3 Standard deviation and coefficent of variation
in the alpha condition

In the previous chapter, it was shown the optimal α is based on variances. This
corresponds to Vasicek (1973)5 and it is a straightforward piece of probability
theory. One could ask if other commonly used measures of dispersion, standard
deviations or coefficients of variation can be plugged into similar formulae.

Standard deviations. It is apparent that

α̃∗ =
std {X2}

std {X1}+ std {X2}
, (13)

where std {X1} = (var {X1})
1
2 and std {X2} = (var {X2})

1
2 , deviates from

the optimality condition presented in the previous chapter (α∗ 6= α̃∗), because
if var {X1} ≤ var {X2},

α̃∗ =
std {X2}

std {X1}+ std {X2}
≤ var {X2}

var {X1}+ var {X2}
= α∗ (14)

and α∗ = α̃∗ if and only if variances (and thus also standard deviations) are
equal. In any other case, the standard-deviation based α̃∗ attributes lower-
than-optimal weight to the better indicator X1, thus producing a supoptimal
composite indicator.6

3In some applications, “badness” is caused by errors, for example in measurement. Never-
theless, in a great bulk of applications, “badness” means the values in the sample are heterodox
and thus do not well describe the qualities of the item whose characteristic we are trying to
infer, e.g. we are valuing Microsoft stock using Exxon Mobil P/E ratio. But extreme obser-
vation is not ipso facto bad, it might convey new information. For this reason, automatically
disregarding extreme datapoints is a dangerous practice.

4Robust measures usually have only known asymptotical (for unlimited dataset) distribu-
tions and finite-sample variance estimates are either approximated or modelled using boot-
strapping, which is downgraded if the sample size is small.

5Who implicitly used this argument to show prior information in Bayesian framework can
enhance security beta estimates

6The proof that C(α̃∗) has greater variance/standard deviation/MSE/RMSE than C(α∗)
arrives to the inequality between arithmetic and geometric averages of two numbers.
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Thus, if one works with standard deviations, their square powers must be
taken when calculating the weights.

Coefficients of variation. Another idea is to weight estimators in accor-
dance with their coefficients of variation (the ratios of standard deviations to
their means):

˜̃α∗ =
cv {X2}

cv {X1}+ cv {X2}
, (15)

where cv {X1} = std{X1}
E{X1} and cv {X2} = std{X2}

E{X1} . The logic of coefficients of

variation is intuitively appealing. They measure average dispersion as a percent-
age of mean values. Because most variables are assumed to be heteroscedastic
(i.e. their absolute dispersion rises as mean rises), comparisons of absolute
dispersion measures as variance and standard deviation is biased in favor of
variables with lower means. To have dispersion measure comparable across
variables with various means, standard deviation should be scaled by mean. In
other words, if the dispersion is approximately proportional to mean, coefficient
of variation stays the same.

One thus can tend to apply this “enhanced” measure to our two-estimator
scenarios. But, what are the means here? As we said earlier, both estimators
are unbiased, i.e. their expected values equal the unobserved true parameter
µ. Then, their expected values are the same. Therefore, there is absolutely no
reason to augment the standard deviation measure by scaling it with a constant.
Were their expected values not equal to µ and different from each other, the
bias (the difference between their expected value and µ) would be rather small
and scaling would not make much sense either.

In our applications we don’t see the expected values, but only means (of
many observations) or a single value (if there estimate is based on only one
observation). Using these means to construct the coefficients of variation adds
another error to the coefficents. In other words, we use the same value in the
estimates(X) and once again in determining their precision (cv). This is not
very good.7 8

From this reason, standard deviation should be used instead of coefficient of
variation when determining weights. Standard deviations have been discussed
earlier.

Finally, it is worth reminding that to have MSE measures comparable, it
is critical to determine variances (or standard deviations) of estimates of the
unknown characteristic µ and not variance of particularities in their determina-
tion (see the example in Chapter 4). This alleviates the need for using variation
coefficients at all.

7Strictly speaking, even when computing variance or standard deviation we utilize the
mean value. Nevertheless, the effect of the mean is much more pronounced in the coefficient
of variation.

8There are statistical tests to reject that both means come from distributions with identical
expected values. They might be used to decide (with some probability) if at least one of the
indicators is biased. Such testing has 3 drawbacks. Firstly, the conclusion is never certain.
Secondly, even the knowlegde that some indicator is biased, is not helpful in determining
which one and by how much. Thirdly, even the existence of the bias does not justify using
coefficients of variation as means of improving precision.
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4 Numerical illustration

Let’s illustate the ideas presented in the previous two chapter on a simple exam-
ple. We have two indicators, price-to-earnings ratio (P/E) and market-value-to-
book-value ratio (MV/BV) for 5 comparable companies labeled Bravo, Charlie,
Delta, Echo and Foxtrot to determine the value of company Golf’s common
stock. Company Golf’s earnings per share are USD 2.0 and its book value per
share is USD 8.0. P/E and MV/BV multiples for similar companies are in the
table below. The “implied price” is calculated as the product of Golf’s dol-
lar item (earnings per share or book value per share) and reference company’s
multiple. For simplicity, sample variances are computed as

n∑
i=1

(xi − x̄)2

n
, (16)

where xi is i-th observation out of n and x̄ is their arithmetic average, and
standard deviations and coefficients of variance are derived from it. A more
proper approach should be to use n − 1 in the denominator to account for the
fact the average is calculated from the very same observations which tends to
artifically reduce the variance.

P/E indicator MV/BV indicator
Comparison company Ratio Implied price Ratio Implied price

Bravo 5.5 11 1.2 9.6
Charlie 6 12 3.1 24.8
Delta 6.9 13.8 1.4 11.2
Echo 7.4 14.8 2.1 16.8
Foxtrot 8.5 17 1.6 12.8
Average 6.86 13.72 1.88 15.04

The ratios and the price of Golf’s stock the ratios imply have the following
descriptive statistics.

Level Indicator Mean Variance Standard deviation Coefficient of variation

Ratio P/E indicator 6.86 1.11 1.06 0.15
Ratio MV/BV indicator 1.88 0.46 0.68 0.36
Implied price P/E indicator 13.72 4.46 2.11 0.15
Implied price MV/BV indicator 15.04 29.54 5.44 0.36

As we can see from the comparison of variances of both indicators on the implied
price level, P/E is here the more precise measure (X1). If optimal α is deter-
mined by plugging variances, standard deviations and coefficients of variation
in the above-mentioned formulae, the following alphas are derived.

Measure Implied price of Golf’s stock Ratios

Variance (α∗) 0.8689 0.2929
Standard deviation (α̃∗) 0.7202 0.3916

Coefficient of variation (˜̃α∗) 0.7014 0.7014

As mentioned in the previous chapters, the correct procedure is to use variances
of the estimators, which are here the variances of implied prices (the result is
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in bold). From the table we can see the all the other options produce different
weights. This necessarily means all other weightings are suboptimal. Especially,
when we falsely compute dispersion of ratios rather than prices, terrible mistakes
occur: the less precise measure receives much heavier weight than the more
precise one! In this respect, only the coefficient of variation is fitted to work with
ratios, though it still differs sligtly9 from the weight when standard deviation
of prices is employed, and it is always suboptimal vis-a-vis the Variance Rule.

Finally, the composite estimate of Golf’s stock price is

C(α∗) = α∗ ·X1 + (1− α∗) ·X2 = (17)

= 0.8689 · 13.72 + (1− 0.8689) · 15.04 = 13.89 USD. (18)

If we plot point estimate, confidence bands of the final estimate of Golf stock
price (based on 95% confidence using normal quantile 1.96) and composite vari-
ance10 (C(α)) for 0 ≤ α ≤ 1, we obtain the following chart.

Note that for α = 0 we use MV/BV estimator only and for α = 1 we use P/E
estimator only. Lower variance and narrower bands for the optimal value of
α∗ ≈ 0.87 indicates the Variance Rule is an improvement over using only one of
these two estimators.11

5 Correlation of estimators

In the baseline analysis we assumed there is no correlation between the estima-
tors. Here we relax this simplifying assumption. Relative to the no-correlation
case, the emergence of correlation

9This is not surprising. As expected values of both estimators are theoretically equal
(or close to) the unobservable characteristic (µ), there is no theoretical distinction between
standard deviation and coefficient of variation weights (of prices). Sampling fluctuations of
means around these expected values force ˜̃α∗ to fluctuate (in both directions) around α̃∗

10Although the actual correlation between the estimates (of prices) is –0.135, the variance
was calculated under zero correlation to show the composition effects described in the baseline
case where zero correlation was assumed. As shown in Chapter 5, negative correlation would
lead to even better composite variances andX2 would receive little heavier weight (i.e., optimal
α would be lower).

11The confidence bands are constructed using a same methodology for all values of α and
thus their widths are comparable. Nevertheless, its dangerous to claim they really represent
the declared 95% reliability.
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• improves the maximal attainable precision of the composite estimator
C(α) by reducing the composite variance for any α, if the correlation
between X1 and X2 is negative. This is because their standalone imper-
fections have the tendency to cancel out.

• worsens the maximal attainable precision of the composite estimator
C(α) by increasing the composite variance for any α, if the correlation
between X1 and X2 is positive. This is because similar standalone imper-
fections have the tendency to occur for both estimators simultaneously,
degrading their diversification ability.

If both estimators are based on the same sample (say, same reference group of
firms) correlation stems from several reasons, including the following four.

• Estimators use same items. If both indicators involve the same buil-
ing blocks, they will be correlated. It is not surprising P/E and Market
capitalization/Net income will be the same and thus perfectly correlated.
Similarly, valuations using DCF models under slightly different setups (for
example, perpetuity and two-stage models) provide correlated estimates,
as both use many simular inputs.

• Estimator items affect each other. For example, when using Price-to-
sales and P/E, it is likely for all firms than earnings are high when sales
are high, both affecting share prices in a similar way.

• Estimator items are jointly affected by a third variable. If a
common third factor, for example, good management, positively affects
both P/E and MV/BV for a firm, correlation occurs.

• Sample is improperly selected. If the sample includes certain subjects
which provide high estimates under both estimators and other subjects
provide low estimates for both estimators, correlation occurs.

This short list illustrates that correlation is likely to occur and will probably take
the (unbeneficial) form of positive relationship and not a (beneficial) reversed
one. We will address only the Variance Rule, as the results for standard devia-
tion and coefficient of variation cases are analogical to the results in the Chapter
4. When the estimators are correlated, their variance is (cov {X1, X2} 6= 0)

var {C(a)} = α2 · var {X1}+ (1− α)2 · var {X2}+ (19)

+ 2 · α · (1− α) · cov {X1, X2} . (20)

Setting optimal weights again requires to differentiate var {C(a)} with respect
to α and set the derivative to zero. It yields

2 · α∗ · var {X1} − 2 · (1− α∗) · var {X2}+ (21)

+2 · (1− 2 · α∗) · cov {X1, X2} = 0 (22)

α∗ =
var {X2} − cov {X1, X2}

var {X1}+ var {X2} − 2 · cov {X1, X2}
. (23)

As the derivative is a linear function, we have only to check the local minimum
(α∗) fulfills the condition of being 0 ≤ α ≤ 1. If yes, then it represents global
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minimum. If not, one of the boundary solutions (α = 0 or α = 1) is optimal.
First we will check if α∗ ≥ 0. We will show the α∗ fraction has both the
nominator and the numerator positive. Let’s start with the numerator. The
variance of a variable X1 −X2 is, as all variances, nonnegative. If this variable
had zero variance, it must mean one of them is always by a constant higher
(we said variances of both indicators are positive), which would violate the
unbiasedness condition E {X1} = E {X2} = µ. Because var {X1} ≤ var {X2},
it implies

0 =
0

2
<

var {X1 −X2}
2

=
var {X1}+ var {X2} − 2 · cov {X1, X2}

2
≤
(24)

≤ var {X2}+ var {X2} − 2 · cov {X1, X2}
2

= (25)

= var {X2} − cov {X1, X2} , (26)

which proves the numerator is always positive. Now let’s move to the denomi-
nator. The denominator equals the variance of a variable X1 −X2 and thus is
again positive. As a result, α∗ satisfies the positivity condition.

Second, we will check if α∗ ≤ 1. This requires

α∗ =
var {X2} − cov {X1, X2}

var {X1}+ var {X2} − 2 · cov {X1, X2}
≤ 1 (27)

var {X2} − cov {X1, X2} ≤ var {X1}+ var {X2} − 2 · cov {X1, X2}
(28)

cov {X1, X2} ≤ var {X1} . (29)

If correlation between X1 and X2 is defined as

cor {X1, X2} =
cov {X1, X2}

(var {X1} · var {X2})
1
2

, (30)

the less-than-unity condition can be simplified to

cor {X1, X2} ≤
std {X1}
std {X2}

. (31)

This time, the condition is not generally fulfilled. If the covariance is positive
and higher than the variance of the more precise estimator, the interior solution
does not exist and it is better to set α = 1 and use the better estimator only.

Restated in terms of correlation, in means the correlation coefficent must be
lower than the ratio of estimator standard deviations. As X1 is more precise,
the ratio is no greater than one. In the case when both are equally precise, the
correlation has to be under 1 to use both estimators, which is almost granted.
Nevertheless, given the fact positive correlations are likely to occur and estima-
tor variances might substantially differ, in many applications it will be optimal
to omit the less precise estimator.

The case under correlation can be summarized as follows. If the estimator
variances are the same, correlation does not alter weight allocation as both
receive equal weights again. If estimator variances differ, correlation does plays
a role. If the correlation is negative, the optimality condition delivers lower α∗
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and the better estimator is weighted less heavily (in some cases even less than
0.5 to fully exploit the diversification potential). Contrarily, if the correlation is
positive, the better estimator receives heavier weight. If the correlation is highly
positive and the less precise estimator is much less precise, the final estimate
should be based on the more precise estimator only.

In many applications, including the example in Chapter 4, it is easy to
measure sample correlations between the estimators and reflect this information
in the optimal weight choice. As we have seen, the effect of correlation can
be dramatic. Analysts are therefore strongly recommended to do so. In other
applications (especially when there is only one value for the estimator) it is more
difficult or even impossible to come up with correlation estimates as this is more
difficult than making a qualified guess about variances. In such situations the
users should stick to the no-correlation case.12

6 Biased estimators

In the last excursion we will depart from the baseline case of no-correlation
and no-bias by investigating what happens if one of the estimators exhibits a
bias. Again, we will assume it is X2, which is biased (E {X2} = µ + δ, δ 6= 0)
and X1 remains unbiased (E {X1} = µ, δ 6= 0). Here we make no assumption
about standalone variances or standalone MSE. If there is a bias in one of the
estimators, the composite estimator C(α) will generally be also biased, as

E {C(α)} = E {α ·X1 + (1− α) ·X2} = (32)

= α · E {X1}+ (1− α) · E {X2} = (33)

= α · µ+ (1− α) · (µ+ δ) = µ+ (1− α) · δ 6= µ. (34)

If biases are present, considering variances is no more equivalent and we have to
resort to MSE to determine the optimal weights or to decide if some estimator
should be completely disregarded. MSE of the composite indicator equals its
bias plus its variance:

MSE(C(α)) = ((1− α) · δ)2 + α2 · var {X1}+ (1− α)2 · var {X2} ,
(35)

when we assume again zero correlation. After differentiating MSE(C(α)) with
respect to α and setting the derivative equal to zero, we obtain

−2 · δ2 + 2 · α∗δ2 + 2 · α∗ · var {X1} − 2 · (1− α∗) · var {X2} = 0 (36)

α∗ =
var {X2}+ δ2

var {X1}+ var {X2}+ δ2
. (37)

Now we will test if such α∗ satisfies 0 ≤ α ≤ 1 to become the globally optimal
weight (again, we can see the derivative of MSE is a linear function of α). First
the positivity condition. As variances are nonnegative and δ2 is positive, α∗ is
positive, too. Second the no-greater-than-one condition. As all terms are posi-
tive and γ ≡ var {X2}+δ2 is positive too, the condition requires γ

var{X1}+γ ≤ 1,

which is always fulfilled as inequality.

12Resorting to zero correlation is not just convenient simplification. From Bayesian per-
spective, if there are no clues what the correlation should be (if positive or negative), choosing
zero correlation is the best option.
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The presence of bias in X2 means the unbiased indicator X1 is, all else equal,
weighted more heavily than in the no-bias case; the higher the bias, the heavier
the weighting. Nevertheles, no matter how great the bias of the second indicator
should be, it is still preferrable to use it. Why? Firstly, if the biased estimator
has substantial variance relative to the unbiased one, under zero correlation the
dispersion tends to cancel out (were there significant positive correlation, the
biased estimator would be ommited). Secondly, if the biased estimator has low
variance relative to the unbiased one, attributing some weights to the biased
one reduces the volatility in the unbiased one. Although the composite mean
value suffers a bit, the moderation is strong enough to lower the MSE.

Because MSE(X1) = var {X1} and MSE(X2) = δ2 + var {X2}, it is pos-
sible to express the optimal weighting in terms of Mean Squared Errors of the
indicators, thus stating a more general proposition.

α∗ =
MSE(X2)

MSE(X1) + MSE(X2)
(38)

Nevertheless, the alpha conditions here are not very useful. In almost all ap-
plications, the bias δ and the bias squared are unobservable, because the bias
is derived relative to the true unobservable characteristic µ, which is unob-
servable by name. Thus, we can’t evaluate the optimal weight formula (α∗).
Indeed, if we knew the bias in terms of its direction and magnitude, we would
be able to add/subtract δ to/from X2 to obtain an unbiased estimator (as
E {X2 − δ} = µ+ δ − δ = µ) and apply the optimal weights from Chapter 2 or
Chapter 5.

This analysis only showed that biasedness does not mean the estimator
should be thrown away.

7 Conclusion

Returning to the three options how the compose a final estimate out of two
indicators which were mentioned in the introduction, their general viability can
be summarized as follows.

1. Weighted average. Assign weights to each of these estimates and cal-
culate their weighted average. This is optimal solution in most cases. The
weights should be set in accordance with the Variance Rule.

2. Simple average. Take a simple average of these estimates. This is the
optimal solution if variances of both indicator estimates are (or are thought
to be) identical. It is also the preferred choice if there is no information
about them.

3. Single indicator. Take the estimate given by the indicator we believe
it is the more precise one. This is the optimal solution if there is strong
positive correlation between the indicators and their variances differ from
each other. Counter-intuitively, if variance of one of the estimators is large
or the estimator contains a bias, it is still better to use both estimators
and reflecting this in the weighting scheme.
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The optimality rule is the Variance Rule, if one uses standard deviations, they
should be adjusted accordingly. Basing the weights on coeffcients of variation
is erroneous.

As the optimal choice utilizes variances and does not rely on any other
aspects of estimator distributions, it has very general validity and can be im-
mediately employed to address a plethora of cases. The Variance Rule can be
used in two ways. First, if sample variances and correlations are observable, the
analyst should use them to obtain rigorous statistically-optimal weights. Corre-
lations should not be automatically assumed away. In many practical situations
there is considerable correlation, affecting the optimal weights allocation, or
even recommending to disregard one of the indicators at all. Second, if sample
variances and correlations are not observable, the analyst should verify, using
the Variance Rule, if the relation of variances tactitly implied by the choice of
weights is realistic.
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